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Claude Shannon

Claude Shannon (1916–2001) is well-known for his:

Foundational work on information theory

Results connecting digital circuits with Boolean algebra

This talk discusses some less well-known results of Shannon about
mathematical models for (analog) computation.
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Introduction Motivation

What is a computer?

Antikythera mechanism

Slide Rule

Differential Analyzer

Laptop

Non-programmable Programmable
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Introduction Motivation

Digital computers are the ultimate computing devices?

Perhaps no!

For example it is believed that quantum computers can efficiently
solve problems which are too hard to solve with digital computers.

Question

Can we theoretically conceive other devices which might have more
computational power than digital computers?

If we are not yet able to build those devices (because of technological
limitations, etc.), this question can only be answered with
mathematical models.

We have a mathematical model for digital computers – the Turing
machine.

But what about for other computing devices?
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Introduction Motivation

In particular, from a theoretical point of view, how do analog
computers (differential analyzers) compare in terms of computational
power with digital computers (Turing machines)?

For example, is it conceivable that one can implement a super analog
computer, using some radically new technology not yet developed?

To answer that question we need a mathematical model for analog
computers!
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The Shannon machine

The Shannon machine (1941)

Shannon worked as an operator on the (mechanical) differential
analyzer of Vannevar Bush (better known for heading the U.S. OSRD
during World War II, through which almost all wartime military R&D
was carried out) to earn some money.

In 1941 Claude Shannon introduced his General Purpose Analog
Computer (GPAC) as a mathematical nodel for diferential analyzers.

It consists of circuits built with four types of basic units:
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The Shannon machine

Examples

Example

Compute y(x) = ex with a GPAC

i e
t

t{
y ′ = y
y(0) = 1
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The Shannon machine PIVPs

Theorem (Shannon, modern version)

A function is generated by a GPAC if and only if it is the solution of some
(vectorial) polynomial initial-value problem{

y ′ = p(y)
y(t0) = y0

The class of solutions of polynomial initial-value problems (called PIVP
functions) has some nice properties:

It is closed under arithmetic operations (+,−,×, /) and composition

All the elementary functions of Analysis are PIVP

Solutions of initial-value problems defined with PIVPs are themselves
PIVPs (e.g. the solution of y ′1 = sin(y2) + y1, y

′
2 = cos(y1) + 3,

y1(0) = y2(0) = 1 is constituted by PIVP functions)

Almost all of Classical Physics can be modeled with PIVP functions
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The Shannon machine Contributions made by Shannon

In summary

Shannon introduced a mathematical model (GPAC/PIVPs) for analog
computers.

The PIVP model has nice mathematical properties and can
simulate/capture a large class of physical systems.

Main takeaway of this talk

Shannon did for analog computers what Turing did for digital computers.
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The Shannon machine Recent results

Some recent results

More recently there has been some research comparing the theoretical
computing power of PIVP functions vs. Turing machines.

Theorem (Bournez, Campagnolo, Graça, Hainry)

PIVPs and Turing machines are equivalent from a computability
perspective.

In the previous result it is assumed that we allow PIVPs to use some time
for computation before giving the output.

Time (t)

Input (x0)

g(x0, t)

ε(x0, t)
PIVP

f (x0)

g(x0, t)

t
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The Shannon machine Recent results

Even if at a computability level we do not get more from PIVP functions,
is it conceivable that we can theoretically compute the solution of some
problems faster, like for quantum computing?

Answer: No!

Theorem (Bournez, Graça, Pouly)

PIVPs and Turing machines (computable analysis) are (polynomially)
equivalent from a computational complexity perspective.

As an (unexpected) side effect, the previous result allows us to define the
class P of functions computable in polynomial time by using polynomial
IVPs and by (polynomially) bounding the length of the solution curve.
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Thank you!
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Definition (Discrete recognizability)

A language L ⊆ Γ∗ is called analog recognizable if there exists a vector q
of polynomials with two variables and a vector p of polynomials with d
variables, both with polynomial-time computable coefficients, and a
polynomial Ω : R+

0 → R+
0 , such that for all w ∈ Γ∗ there is a (unique)

y : R+
0 → Rd such that for all t ∈ R+

0 :

y(0) = q(ψ(w)) and y ′(t) = p(y(t)) I y satisfies a differential
equation

if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I the decision is stable

if w ∈ L (resp. /∈ L) and leny (0, t) > Ω(|w |) then y1(t) > 1 (resp.
6 −1) I decision

leny (0, t) > t I technical condition
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Theorem (An implicit characterization of P - Bournez, Graça, Pouly)

A decision problem (language) L belongs to the class P if and only if it is
analog recognizable.
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